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Figure 1: The user interface of DIVA, a web-based visual analytics system for exploring and verifying Drug-Drug Interactions (DDIs) proposed via machine
learning methods. (a) Screening Overview – showing candidate Drug-Drug Interactions for selected score. (b) Signal Triage View – enables drug-centric
analysis of interactions, including the number of severe Adverse Reactions (ADRs). (c) Signal Forensics View – a view of the interaction profile of a drug of
interest, including all ADRs triggered by each signal. (d) Controls facilitate navigation between views, and direct filtering by drugs of interest. (e) Legends for
colors.

Abstract
Adverse reactions caused by drug-drug interactions are a major public health concern. Currently, adverse reaction signals are
detected through a tedious manual process in which drug safety analysts review a large number of reports collected through
post-marketing drug surveillance. While computational techniques in support of this signal analysis are necessary, alone they
are not sufficient. In particular, when machine learning techniques are applied to extract candidate signals from reports, the
resulting set is (1) too large in size, i.e., exponential to the number of unique drugs and reactions in reports, (2) disconnected
from the underlying reports that serve as evidence and context, and (3) ultimately requires human intervention to be validated
in the domain context as a true signal warranting action. In this work, we address these challenges though a visual analytics
system, DIVA, designed to align with the drug safety analysis workflow by supporting the detection, screening, and verification of
candidate drug interaction signals. DIVA’s abstractions and encodings are informed by formative interviews with drug safety
analysts. DIVA’s coordinated visualizations realize a proposed novel augmented interaction data model (AIM) which links signals
generated by machine learning techniques with domain-specific metadata critical for signal analysis. DIVA’s alignment with the
drug review process allows an analyst to interactively screen for important signals, triage signals for in-depth investigation, and
validate signals by reviewing the underlying reports that serve as evidence. The evaluation of DIVA encompasses case-studies
and interviews by drug analysts at the US Food and Drug Administration - both of which confirm that DIVA indeed is effective in
supporting analysts in the critical task of exploring and verifying dangerous drug-drug interactions.
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1. Introduction
Adverse drug reactions (ADRs) caused by drug-drug interactions
are a major cause of mortality, resulting in more than 100,000 deaths
annually with a yearly cost of over $170 billion in the U.S. alone
[LPC98, EG01]. Polypharmacy, the use of multiple drugs to treat
medical conditions, is also rising. For example, approximately 29%
of elderly patients are taking six or more drugs, which increases
the chance of harmful and possibly fatal Drug-Drug Interactions
(DDIs) [BMS∗08].

Before approval for use, new drugs are tested for interactions with
existing drugs using both clinical trials & animal studies (in vivo)
and tests on cells (in vitro) methods [ZZZH09]. However, any given
drug may interact with other drugs in numerous, unexpected ways.
These interactions make it impossible to test all possible drug com-
binations before a drug is released to the market. Drug regulatory
authorities therefore collect, analyze, and make regulatory decisions
based on reports on adverse drug events via a process called post
marketing drug surveillance, which aims to detect unanticipated
adverse reactions that were not discovered during clinical trials.
Early detection makes it possible for authorities to take actions that
minimize patient exposure to harmful drug combinations.

The U.S. Food and Drug Administration (FDA) conducts post
marketing surveillance via the FDA Adverse Event Reporting Sys-
tem (FAERS) [FA15]. Similar systems are also in operation inter-
nationally, including the World Health Organization [Lin08], as
well as in Canada [Can16] and Britain [AAB∗11]. In 2016, FAERS
received approximately 1.7 million drug reaction reports [FA15]. Di-
rect information about drug interactions is not captured in these
reports. Rather, each report includes the drugs being taken by
the patient along with the observed adverse reactions. Prior stud-
ies [HCF10, QKW∗17] have suggested that these reports are a criti-
cal information source for discovering potential drug-drug interac-
tion signals worthy of investigation. Such interactions may represent
causal effects between a combination of drugs that result in danger-
ous adverse reactions.

One challenge is that the manual approaches currently used for
detecting and investigating candidate signals in large sets of drug
safety reports are tedious, and time consuming. Complicating the
problem in practice is the reality that, due to staff limitations, a small
team of roughly fifty analysts at the U.S. FDA have dedicated time
for reviewing these reports. Given these restrictions, the primary
workflow of the FDA primarily focuses on signal detection related
to single drug adverse reactions, with drug-drug interaction findings
remaining more a matter of chance, despite its significant risks.

Automated approaches to drug reaction analysis are also insuffi-
cient. Machine learning techniques proposed to mine drug reaction
reports for signal hypotheses tend to generate a large number of
candidate signals [SFG16,ADK∗03,HCF10,ISAE16,CLH∗17]. For
example, n distinct drugs and m unique adverse reactions across
a set of reports result in up to O(2n+m) signals in the worst case.
Regardless, machine-generated signals require inspection by drug
safety analysts, who must analyze and validate signals as worthy of
escalation, or dismiss signals because of insufficient evidence.

In this paper, we propose to address these challenges through
a visual analytics framework called Drug Drug Interactions via
Visual Analysis, that supports drug safety analysts in analyzing
drug-interaction signals mined from the drug surveillance reports.
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Figure 2: The current Drug Review Process, composed of Signal Screening,
Detection, and Evaluation phases.

To design a visual paradigm that aids the review process, we first
study the full life cycle of how drug interaction signals are screened,
studied and eventually used as evidence for recommending regula-
tory action. By interviewing drug safety analysts and observing their
review routines, we construct a data abstraction, the Augmented
Interaction Model (AIM), that captures the core data concepts and
their relationships critical for drug analysts to explore and validate
candidate interaction signals. Through these interviews, we also
extract key requirements essential to drug analysts’ review process,
which guide the design of DIVA’s visual displays and underlying
operations to allow analysts to explore and validate mined drug
interaction signals. Following an iterative design process and eval-
uations, DIVA’s resulting visualizations (Fig. 1) include a network
visualization that shows a summary of interactions in focus reports,
a small-multiples node-link view that supports drug-centric inspec-
tion of signals, and a profile view that enables in-depth investigation
of a signal, including the underlying reports that serve as evidence.

The primary contributions of this work include:
• A characterization of the drug safety review process via formative

interviews, which serves as a basis for extracting requirements
for drug interaction signal detection and verification.
• A domain knowledge driven data abstraction, the Augmented

Interaction Model (AIM), that integrates the diverse critical infor-
mation composed of machine-generated signals, relevant domain
knowledge extracted from external sources, and evidential reports
into one unified model for sensemaking.
• Interactive visual displays, each built on top of the AIM model,

that enable drug analysts to explore relevant slices of the AIM
model from multiple perspectives in support of the specific sub-
tasks in their review process.
• An evaluation consisting of case studies with domain experts,

which demonstrate the utility of visual analytics approaches for
exploring, analyzing, and validating drug interaction signals, par-
ticularly when juxtaposed with current state-of-the-art practices.
The results of evaluations with U.S. FDA analysts suggest that

DIVA’s visual analytics for drug interaction signal screening fills
a tangible need in the early detection of severe interactions. DIVA
allows analysts to move between levels of abstraction – building
trust in the results of the computational techniques augmented with
human interaction for better decision making. By aligning with their
workflow, DIVA aims to support analysts in identifying dangerous
drug interaction signals from an overwhelming set of candidates.

2. Background
DIVA draws from prior work in visualization spanning at least two
primary categories, including visualization techniques for associa-
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tion rules, and visualization systems focusing on the discovery and
analysis of drug interactions.

2.1. Association Rule Visualization
Drug-drug interactions are often associated with a consistent set
of adverse reactions. As such, these relationships have been mod-
eled using association rule techniques in prior work, particularly
in data mining contexts. DIVA therefore draws on prior work in
visualization that centers on association rule visualization.

Romero et al. [RLRV11] represent association rules with simple
text in a tabular format. Grids (2D matrices) [OONL02, BKK97]
and 3D matrices [WWT99] have also been proposed to visualize
association rules for smaller data sets. Matrices with a fish-eye
view [CRC07, CHYN07] visualize association rules in more detail.
InterVisAR [CSW16] uses a two-dimensional bar chart approach to
allow users to search for particular rules.

In Mosaic plots [HSW00], individual antecedent items are shown
as horizontal bars along the x-axis and the support of an associ-
ation is represented by the height of the vertical column above
the specified item. Existing graph based association rule visualiza-
tion tools [HHHW98, HCHB11, TD05, LS16] tend to focus on an
overview of the generated rules, rather than the investigation and
validation of a set of rules.

In parallel coordinates-based rule visualization [Yan05, HC00]
each vertical line depicts a set of items and a rule is represented by
lines or splines. Some initial work has combined two techniques to
visualize rules [BC05, SH13, BGB03]. Buono et al. [BC05] used
both graphs and parallel coordinates to get an overview as well as a
detailed view of selected rules. Sekhavat et al. [SH13] used matrices
as overview of rules and graphs to analyze a selected subset of rules.
Another approach includes a virtual arena [BGB03] where rules are
represented as spheres positioned by the steps of an arena. Similarly,
glyphs have been used to represent quantitative values associated
with the rules [QKW∗18].

These prior approaches support rule analysis with the primary
goal of visualizing the structure of these machine-generated rules,
such as common consequents and antecedents. While the design
space covered by DIVA shares some of these goals, other key an-
alytics tasks differ. For example, the work context in which DIVA
was designed requires support for in-depth analysis of the content
of these rules, including features such as severity and relations to
other drug and adverse reaction pairs.

2.2. Drug-Interaction Visualization and Network Diagrams
Several recent studies have developed visualization systems for
analyzing interaction between drug and proteins as well as with
other drugs. Kegg [KGF∗10], like other online tools [Drub, DDI],
is a search interface for known drug-drug interactions. In this work
we have used such tools to extract known signals into a hypothesis-
driven exploratory system for discovering and analyzing unknown
signals.

Stitch [KvMC∗08] integrates data from various sources and uses a
network visualization to represent Drug-Protein interactions. Promis-
cuous [VEMD∗11] integrates data from three different molecular
databases and visualizes Drug-Target interactions and drug-related
adverse reactions using node-link diagrams. Both of these tools
focus on data integration and allow exploration of drug related
chemicals, however, these tools are not designed to support drug
safety analysis workflows. GraphSAW [SHK∗15] integrates data

about known drug-drug interactions from various sources. A radial
network graph is used to visualize a set of adverse reactions and
drug interactions. Network visualization techniques are also used to
analyze vaccine related adverse events [BB11a, BSG∗14, BB11b].
For example, Botsis et.al propose AENA [BSG∗14], which uses a
network diagram with an edge weighing algorithm to identify out-
liers in the U.S. Vaccine Adverse Event Reporting System. While
these tools do not support the specific analytic activity of conducting
pharmacovigalance by analyzing drug reports for unknown inter-
actions, they do form a broader landscape of tools that aid in the
overall pharmacovigalance mission by providing access to known
interactions between drugs and drug compounds.

3. Task Characterization
To design DIVA, we worked closely with domain experts at the
FDA who serve as drug safety analysts. We used an interview-based
iterative design process, presenting the analysts with progressively
refined prototype visualizations to characterize the requirements in
support of their workflow. In doing so, we arrived at the Augmented
Interaction Model which serves as a basis for the visualizations and
interactions in DIVA.

3.1. Interviews with Domain Experts
We organized a series of semi-formal interviews with drug safety
reviewers. A primary aim was to understand the current drug review
process and to identify challenges that reviewers face in analyzing
drug-drug interactions. From these interviews, we learned that cer-
tain information was critical to their workflow. We also observed
how they transformed certain data throughout the analysis. This
then informed our creation of a data abstraction which we call the
Augmented Interaction Model (AIM). The AIM captures the criti-
cal information analysts need to identify possible adverse reactions
caused by drug interactions (signals, for short) by integrating domain
specific meta-information with mined drug-drug interactions.

To design and refine the specific visualizations DIVA uses, we
showed the analysts sketches of design alternatives, such as glyphs
and variations of network diagrams. This activity helped us gather
additional design requirements. In subsequent interviews, we pre-
sented analysts with a working prototype of DIVA to evaluate their
perceptions of the degree to which DIVA meets their needs, and
to receive further feedback on the visual and interaction design. In
the final session, a larger group of analysts used DIVA to explore
FAERS data. This activity led to additional insights on the utility of
DIVA, a visual analytics tool in supporting the drug review process.

3.2. The Drug Review Process
The goal of drug safety analysis is to identify potential safety issues
related to drug-drug interactions, and to escalate cases for further
action if sufficient supporting evidence is found during the evalua-
tion of potential signals. The drug review process is composed of
iterative steps as depicted in Fig. 2. Each safety analyst receives
reports related to the drugs assigned to them.

The drug analysts we interviewed screen their assigned reports
for red flags such as a severe adverse reaction. The primary mecha-
nism the analysts use for retrieving these reports are pre-computed
database queries. As a next step, the analysts explore whether a
candidate signal needs to be escalated for further review and action
by searching for similar reports and reading their associated text
narratives in detail. If the analyst finds sufficient evidence to move
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forward, they proceed by evaluating patient’s medical histories to
find additional evidence supporting a potential signal.

If there is sufficient evidence, then analysts formulate their rec-
ommendations along-with the supporting material for escalation.
Post-escalation action can led to regulatory action, such as changing
drug labels or restricting drug usage. In severe cases, drugs are re-
moved entirely from the market [WS05]. Drug review analysis has
many challenging sub-problems.

Given the complexity of inferring and investigating drug-drug
interactions, analysts often focus on single drugs and their adverse
effects. DDIs are sometimes investigated only incidentally, if a hy-
pothesis is formed during routine report analysis.These factors, com-
bined with known limitations of purely computational approaches,
motivate the need for visual analytics systems that improve the drug
review process. Hence, we set out to design displays and interactions
to realize a visual analytics drug review workflow to explore and
validate machine-generated hypothesized signals interactively.

3.3. Requirements Analysis
Throughout our interviews with the drug review analysts, we estab-
lished and incrementally refined a set of requirements to guide the
design of DIVA. While these requirements were iteratively updated
throughout the course of the project, the following list represents the
final version of the requirements used to inform the development
and evaluation of DIVA.
Screening for Possible Drug-drug Interactions:

R1: Provide an overview of all signals. Given the large number of
drugs and ADRs, approximately tens of thousands in three months
of data, the possible relationships between drugs and ADRs (sig-
nals) extracted from this data is large. Analysts expressed a need
for an overview of potential candidates drug interactions to gain
a quick preview of their tasks. Such an overview should help an
analyst screen for low-importance DDIs, and narrow down the
search space to focus on those that are both likely and severe.

R2: Allow analysts to segment and prioritize signals. We found that
drug safety analysts review reports based on a set of roughly
hundred drugs assigned to them. This implies a need to segment
signals based on the assigned drugs. As each drug may interact
with hundreds of other drugs, possibly outside the analysts’ as-
signed list, functions for the prioritization of signals are required.

R3: Integrate previously known signals. The mining and data inte-
gration process generates both signals that are known (that is,
previously discovered and already documented by the commu-
nity) and unknown/unverified interactions. Analysts need ready
access to such prior domain knowledge to determine if a can-
didate signal is indeed unknown and thus worth of exploration.
Without that, huge overhead may be wasted by looking up ex-
ternal resources, duplicating work or worse yet, taking guesses
based on their recollections.

R4: Facilitate identification of unknown signals. Drug review ana-
lysts are interested in uncovering unknown, novel signals that
constitute a hypothesis worth escalation and further investigation.
Therefore, unknown signals must be easily recognizable so they
can remain a priority.

R5: Facilitate identification of severe adverse reactions. Drug inter-
actions leading to severe adverse reactions (ADRs) such as heart
attacks, kidney failure, or death (as opposed to non-severe ADRs

such as headaches or nausea) must be given greater attention.
Severe ADRs must thus be easily identifiable.

R6: Ready access to evidence supporting signals. Domain experts
have indicated that it is essential to have direct access to the
actual reports, because these reports form the key evidence for a
suspected signal candidate. Views must be designed to provide
rapid access to the reports.

4. The Augmented Signal Model
4.1. FAERS Reports
Reports submitted to the FDA Adverse Event Reporting System
(FAERS) contain structured information about patient demographics,
drugs taken, therapies, and adverse reactions. They also contain an
unstructured textual narrative that describes the adverse reactions in
detail and contains richer information such as a patient’s medical
history. This collection includes mandatory reports submitted by
drug manufacturers and voluntary reports submitted by health care
professionals and consumers. To ensure the reproducibility of our
research, we focus on a public version of FAERS data that includes
the structured information with no personal identification and is
available on a quarterly basis [FA15]. The core data elements, such
as drugs and ADRs within each report processed by our machine
learning module, are available in this structured FAERS. While the
inclusion of the actual narratives can be easily provided by DIVA
internally for the FDA analysts, however, for privacy reasons they
cannot be published publicly.

4.2. Augmented Interaction Model (AIM)

Drug� Adverse Reaction �

API�

Signal (Drug-drug interaction related reactions)�

Approval 
Date�

Class� Severity� Type�

Interestingness�
Score�

Label 
Status�

Link to 
Reports�

Interacting Drugs� Adverse Reactions�

|Ds|	 |Rs|	

Figure 3: Augmented Interaction Model (AIM) describes the data entities,
their properties and relationships which consist of a drug-drug interaction
related reaction signal. Each signal encodes a casual relationship from a set
of interacting drugs Ds to a set of triggered adverse reactions Rs.

After rounds of interviews and initial design alterations, we devel-
oped a data abstraction [Mun09] that reflects a unit of exploration
from the FDA analysts perspectives. Drug interaction related sig-
nals information consists of data from various external sources,
generated automatically as well as manually. We capture all this
information in the form of entities, attributes and their relationships
into an Augmented Interaction Model (AIM).

The AIM provides all the information essential for an analyst to
be able to explore and analyze signals, i.e., screen the important
ones and validate them. In this section, we define the core entities
that form the AIM abstraction and explain how each component in
AIM is instantiated by DIVA’s visualizations and interactions.
Definition 1 Drug Entity. A drug entity DE refers to a single drug
product d from a list of approved drugsD. Each drug d is associated
with a set of attributes Ad = {a1, · · · ,an} that describe d.

Below are the attributes most useful in the review process.
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a1 API (Active Pharmaceutical Ingredient): The central ingredi-
ent that produces the effects of the drug.

a2 Approval Date: The date when the drug was approved by a
regulatory agency.

a3 Class: A specific drug category that the drug belongs to.
These attributes are independent from the reported adverse events

and the generated signals. A signal is composed of at least two
distinct drugs, i.e., the interacting drugs.

An adverse drug reaction (ADR) is an unwanted reaction possibly
triggered by the administration of a medication.
Definition 2 Adverse Reaction Entity. An adverse reaction entity
AE refers to a single reaction r from a reaction vocabularyR. Each
reaction r has a set of attributes Ar = {a1, · · · ,am} that describes r.
The attributes relevant to the review process include:

a1 Severity: The severity of an ADR is a binary attribute that indi-
cates if the ADR is serious, determined and maintained by FDA.

a2 Type: A specific ADR class as defined by a medical dictionary.
A signal describes the interacting drugs and the resulting reactions

which are the outcome of the interaction.
Definition 3 Signal. A drug-drug interaction related adverse reac-
tion signal s models a causal relationship between a set of inter-
acting drugs Ds and a set of triggered reactions Rs, denoted as
s =Ds→Rs where Ds ⊆D andRs ⊆R. Each signal s is associ-
ated with a set of attributes As = {a1, · · · ,an} that explains it.
Signals are generated from a set of FAERS reports using computa-
tional methods. Attributes related to the signal critical for the review
process include:

a1 Interestingness Score: A numeric variable that quantifies how
significant a signal is with respect to a given set of reports. The
significance reflects how likely this signal is true and worth of
further investigation. This score is calculated by the machine
learning techniques.

a2 Label Status: The label status is a binary variable indicating
whether or not this signal is already known to the FDA, or it is
currently unknown.

a2 Links to Reports: Links to all evidential reports from which the
signal is derived.
The AIM model represents the above mentioned entities namely,

drugs and reactions, the signals composed of these entities and the
domain knowledge that augments these signals as depicted in Fig. 3.
Definition 4 The AIM Model. Given a set of reports T , an
Augmented Interaction Model (AIM)MT can then be captured by
a set of signals ST = {s1, · · · ,sn} derived from T . The attributes
of the drug entity DE, adverse reaction entity AE and the signal s
are populated based upon T and other domain knowledge such as
Drugs.com [Drub].

4.3. The AIM Model Instantiation
The AIM model captures rich information about drugs, ADRs and
possible signals extracted from a given set of reports. Next, we
discuss how this model is instantiated.

Instantiation of Entities and their Attributes. The FDA main-
tains a list of approved medical products, including drugs currently
in the market [druc]. Each drug is documented with detailed infor-
mation such its active ingredients, approval date, and drug class. In
this study, we extract these attributes from FDA resources [druc]
and construct a drug entity repository for use in DIVA.

For an adverse reaction (ADR) entity, we use the Preferred Terms

from the MedDRA Hierarchy [med] to form an adverse reaction
vocabulary. To specify the severity of these reactions (R5), we
leverage the list of Designated Medical Events (DMEs) also known
as severe ADRs maintained internally by FDA for review purposes.
A severe ADR such as heart failure or liver injury is more alarming
than nausea or headache. Thus it must be prioritized over less severe
concerns to avoid further patient exposure.

Instantiation of Signals and their Attributes. Drug-drug inter-
action related adverse reaction signals are the core components of
the AIM model. They correspond to severe candidate DDIs extracted
from a set of reports. Prior studies [HCF10, QKW∗17] have sug-
gested signal generation by modeling associations between drugs
and reactions using their co-occurrence in the surveillance database.
That is, frequent pattern mining methods have been applied to ex-
tract signals.

In this work, we adopt MARAS [QKW∗17] technology to mine
potential signals as sketched below. MARAS adopts association rule
learning to identify relationships among objects that occur together
in a database. In the surveillance database (FAERS), each record
can be modeled as a combination of a reported drug set and the
reported observed ADR set. The rules that model the relationship
between a drug set and an ADR set are signals that need exploration
and validation.

A brief formulation of MARAS follows. Let each report ti be
represented as a set of distinct drugs (D) and a set of distinct adverse
reactions (R). The generated rules modeling drug interactions are
in the form of:

Rule =D→R. (1)
Many measures [Sah10] exist to evaluate the significance of a rule.
Two common measures are support and confidence.

MARAS addresses issues related to avoiding misleading rules
in this context through a contrast measure (See [QKW∗17]). This
evaluates how likely the ADRs are caused by a drug interaction. The
intuition behind this measure is that if ADRs are triggered by the
drug-drug interaction, then they should have less chance of being
triggered by any of the individual drugs in the signal. The contrast
measure is used as an interestingness score to help prioritize signals
in DIVA. Signals with higher scores have more chances of being true
signals warranting action, therefore need to be prioritized by safety
analysts. Other proposed measures [Sah10] can also be plugged in to
the system. The linkage (Case-Ids in FAERS reports) to raw reports
used to extract the signals is maintained during the mining process
so that analysts can access these reports for signal validation (R6).

Computer-generated signals may be both already known (labeled)
signals as well as unknown (unlabeled) signals. These generated
signals can help drug safety analysts form hypotheses where they
identify novel and severe signals worthy of further investigation.
Therefore, such unknown signals must be distinguishable from the
already known ones as such by their Label Status. Information about
the status of a signal is not available in FAERS, neither does the
signal extraction method provide this information. Hence, to assist
analysts, we incorporate such information into our AIM model (R3)
by extracting it from external sources [Drub].

5. DIVA System Overview
The DIVA framework depicted in Fig. 4 consists of two major
components, namely the AIM Constructor that generates AIMs
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Figure 4: Overview of the DIVA framework consisting of two main compo-
nents: the AIM Constructor and the DIVA Visualizer.

from reports and the DIVA Visualizer that supports interactive
visual analytics of AIMs from multiple perspectives.

The AIM Constructor has three modules: The Data Preproces-
sor, Signal Generator and Signal Augmenter. The Data Preproces-
sor transforms the original FAERS reports into the format required
for the signal generation algorithm. During the preparation, dupli-
cate reports are removed and drug names are cleaned due to different
variants of same drugs and spelling mistakes.

The Signal Generator module adapts MARAS [QKW∗17], a drug
interaction signal extraction and scoring technique. Other machine
learning techniques [SFG16, ADK∗03, HCF10, ISAE16, CLH∗17]
are also candidates for producing signals that serve as input to DIVA.
These generated signals model the association between drugs and
ADRs, depicted in Fig. 3, along with its interestingness score (con-
trast) [QKW∗17]. The Signal Augmenter populates the rejoining
attributes of the signals to produce AIMs. Domain knowledge such
as the label status and severity of ADRs is obtained from external
data resources.

The DIVA Visualizer module, consisting of multiple coordinated
views (Fig. 1), provides multiple perspectives into the Augmented
Interaction Model. The views aim to align with the work-flow of the
analysts so that they can explore the major components of the AIM
in an iterative manner. The underlying queries and data exchanges
between the AIM and the analysts are supported by the Query
Executor. A cache is used to optimize the query execution time.

 

furosemide 
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Figure 5: FAERS Reports associated with interaction Lansoprazole and
Digoxin. Every report has Furosemide which is used to treat kidney disorders.

The Screening view gives an overview of all hypothesized drug-
drug interactions supporting an analyst in screening unknown and
high scored signals (Fig. 1-a). The Triage view, composed of small

multiples, shows all the drug interactions associated with a particular
drug or set of drugs. It helps analysts prioritize a drug for review
based on the aggregated interestingness of its interactions (Fig. 1-
b). The Forensics view includes adverse reactions related to each
drug-drug interaction for further exploration (Fig. 1-c). To further
investigate a drug interaction, at the lowest level, the Reports view
visualizes the line-listings and text narratives of reports associated
with a selected drug interaction (Fig. 5). We developed the visual
interface of DIVA following the aforementioned design rationale
(Section 3). All views are coordinated via brushing and linking,
supporting hypothesis generation, exploration and validation in the
context of drug interactions.

6. Design of DIVA Interactive Views
DIVA, a Web-based system, has been designed to fulfill the re-
quirements elicited in Section 3. DIVA is composed of multiple
coordinated interactive views, that based on the tasks, provide dif-
ferent perspectives into the AIM data model because of its richer
content. The visual encodings reflect aspects of the AIM data model
including information such as the drugs and reactions that com-
pose a signal, an interestingness score, label status, and severity of
adverse reactions (DMEs).

6.1. Signal Screening Overview
The Screening view provides an overview into drug-drug interac-
tions (R1). This view allows analysts to see the entire space of the
machine generated drug-drug interactions through a node-link dia-
gram (Fig. 6). Here nodes represent the drugs, while edges depict
an interaction between a pair of drugs. The shape and size of the
edge encodes whether an interaction is known (dotted and thin) or
unknown (solid and thick). The color of an edge is mapped to the
strength of the interaction as determined by the mining technique
(the interestingness score) derived from the support and confidence
(see Section 4.3). All colors are selected based on their encoded
data types using ColorBrewer [HB03]. The shape channel is used
for encoding the binary signal status attribute, while color is used to
depict score which is divided into four bins based on the distribution
of the scores.

A pair of drugs can contribute to multiple signals, each of which
can have a different score. To avoid confusion and repetition of
data in the Screening view, each drug is represented only once.
This way an analyst can instantly examine the degree of possible
interactions between drugs. When multiple signals are caused by
the same drug pair, an aggregated score encodes the interestingness
score represented by edges. In such cases, we use the maximum
score of all generated signals as an aggregated score to represent the
drug-drug interaction. A maximum score is used as an aggregated
score so the analyst can know quickly that at least one of the signals
related to a particular drug pair is interesting as opposed to using an
average of scores that might hide a highly scored signal by averaging
it. Similarly, even if one of the multiple signals related to a drug
pair is unknown, the edge is marked unknown (solid and thicker) to
grasp the analyst’s attention. This helps avoid missing the detection
of novel signals. While it is possible to augment these views with
more nuanced information, for example through glyphs or more
complex color schemes, we instead emphasize visual cues based on
drug analyst’s reported work-flows.

The length of the edge or the position of the node is a by-product
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Figure 6: (a): Screening View gives an overview of interactions between
drugs. Each node is a drug and edge depicts an interaction between two
drugs. (b): Color Legends for: (i) Interestingness score in all views, (ii)
Severe adverse reactions (or “DME”) count in the Triage View, (iii) Shape
of links representing label status in the Screening and Forensics view.

of the force-directed layout to assure efficient use of space. This
view invites high-level comparisons between DDIs to help an expert
in the screening of non-important DDIs (R2). Analysts may be more
interested in a DDI leading to a particular ADR that is not discovered
yet via clinical trials or post-marketing surveillance, as their goal
is the detection of novel signals with minimum patient exposure.
Moreover, an overview can enable a team leader to track where in
the space of possible DDIs their analysts should invest their time at.

Design Alternatives: Based on the requirements discussed in
Section 2, we explored a large design space of visual encodings.
Several candidate views were iteratively eliminated based on the
analysis of the elicited requirements through the periodic interviews
with analysts.
• Table View: The simplest method to show rules or data with re-

lationships is a tabular format [RLRV11], where each attribute
can be a column and each row corresponds to a signal. Table-
Lens [RC94] which is designed to allow users to detect patterns,
correlations, and outliers in the data set using tables is suitable
for presenting numerical data. However, most of our data is cate-
gorical. Also thousands of drugs and ADRs with many to many
relationships form the signals. Thus a tabular format may be
cognitively demanding and tedious for exploration. Moreover,
a tabular format does not provide enough visual dimensions to
encode AIM models as units (R1, R4, R5).
• Adjacency Matrix: An alternate design to visually encode drug

interactions would be an adjacency matrix where row and col-
umn dimensions map to the drugs and each cell depicts a DDI
[BKK97, WWT99]. Adjacency matrices have two shortcomings.
First, drugs might interact with other drugs as nearly disjoint
sets, that is, each drug on the x-axis might have a different set of
interacting drugs on y-axis. This would render the matrix mostly
empty. Second, with hundreds of drugs, the matrix size grows
which affects readability.

6.2. Signal Triage View
To align with the work-flow of the analysts, we aim to help them
prioritize which drugs and interactions to analyze first from a pool
of drugs assigned to them (R2). For this, we designed a Triage view
using the small multiples technique with a small node-link diagram
using the force-directed layout [Tuf91, APP11, RFF∗08, FHQ11].

Each small multiple represents a drug and all its associated drug

b

a
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e

h
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f	

Figure 7: The Triage View - (a) Sort. (b) Pinned drugs (c) Color of box
represents total number of severe reactions present in all signals related to
Omeprazole. (d) Zoom in to view the Profile of Omeprazole. (e) Pin a drug.
Interacting drugs with an (f) unknown and high score signal, (h) unknown
and low score signal, (i) known and low score signal.

interactions by nodes. The outer box represents the count of severe
adverse reactions (also known as designated medical events (DMEs))
present within each small multiple with a continuous color scale,
where gray color is used to encode the absence of severe ADRs.

The center node represents the drug of interest and nodes sur-
rounding it depict all other drugs interacting with the drug of interest
(Fig. 7). At a glance, the analyst can get an overview of each of her
assigned drugs. She can pick the drug with a comparatively larger
number of DMEs, i.e., severe ADRs (R4). Or she can focus on the
most interesting drug-drug interactions without any overwhelming
details about the signal such as the related adverse reactions.

The option to pin a drug is provided to facilitate the analyst in
prioritizing a drug to further explore it (R5). Pinning helps the
analysts maintain context, so that they can resume their work where
they left off in case they do not finish the review of a particular drug
in one go. Similar to the Screening view (Section 6.1), if a drug-pair
has many signals, the maximum interestingness score is mapped to
the color of the nodes to facilitate attention.

We worked with analysts through alternate variations of encod-
ings and visual channels, arriving at final views based on analysts’
consensus on the views they perceived as being best for their tasks
and workflow. Links are associated with several visual channels
in the Screening view, as each node is associated with multiple
drugs and this stage of the workflow requires analysts to reason
about specific links between drugs. In contrast, links are only used
as an association visual channel in the Triage view, as each node
represents one drug and analysts reported difficulty in reading these
views when links were encoded. Other visual channels were not
found to be helpful at this stage. For example, the size channel for
nodes is not currently used in the Screening and Triage views in part
because the relatively small size may hinder expressive quantitative
encodings of size, and additional categorical representations were
seen as unnecessary in this first prototype system. At the same time,
these choices are meant to serve as a baseline for future evaluations,
where analysts may find that additional encodings are useful to
enable more rapid or robust exploration of the data.

The drug name represented by a node along with other informa-
tion about the interaction such as the number of reports supporting
the interaction, their ADRs, their scores etc. is revealed via a tool-tip
upon hovering over a node. The Triage view and the Screening view
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represent information about AIMs differently and support differ-
ent tasks. The Triage view helps the analysts prioritize drugs to be
looked at and analyzed first (R2), while the Screening view gives
them high level information on all interactions to empower them to
screen out the unimportant ones (R1).

Design Alternatives: Other design alternatives are possible for
the Triage view such as a compact barchart where the height of a
bar represents the interestingness score and color depicts the label
status of a DDI. A graph view has two desirable properties. First, a
Triage view based on node-link diagrams is consistent with other
views [QH16]. Second, with a central drug, graphs can display a
larger number of interacting drugs visually separable in a small
space. This makes the comparison of different interactions easy as
compared to a compact barchart.

b

a

e

f	

d

c

Figure 8: Signal Forensics View: a tree layout allows an analyst to view
and analyze the whole Augmented Interaction Model of a drug. (a) The root
node represents the drug of interest – Omeprazole. (b) The second level
represents drugs interacting with Omeprazole. (c) The third level represents
the reactions related to each DDI – grey color represents non-severe reac-
tions. (d) Severe reactions. (e) A signal with highest score - dark color. (f)
Link between Omeprazole-Simavastatin depicts the aggregated score and
unknown status because some of the signals are unknown.

6.3. Signal Forensics View
Once analysts screen and prioritize the drug of interest by inter-
acting with the Screening and Triage views, they can explore the
signals further using this view by analyzing the related reactions
(R4, R5). The Forensics view (Fig. 8) depicts a full Augmented
Interaction Model (AIM) for one particular drug of focus. It not
only displays but also differentiates among the scored interactions
of a drug and their corresponding reactions along with their severity.
There is a wide range of potential visual designs to represent drug
related reactions, both containing categorical attributes. DIVA uses a
modified version of tree diagram, which was found to be among the
most appropriate alternative designs compared to adjacency matri-
ces or parallel coordinates. While a tree encoding is more commonly
adopted to visualize hierarchical data, they are a good fit to visualize
AIMs due to the data structure and analyst’s workflow patterns. A
three-level tree layout represents the core attributes of AIM, i.e., the
two interacting drugs and their respective reactions for every signal.
Also, a drug interaction may be associated with multiple sets of
reactions leading to different signals each with different attributes,

i.e., interestingness scores and label status (R2, R4). Hence each
signal can be visually encoded with a tree layout.

In the Forensics view the root node represents the drug of interest.
The nodes in second level represent all the drugs that interact with
the drug of interest. The nodes in third level represents the reactions
related to each DDI. A horizontal tree layout is used instead of a
vertical one so that reactions and labels can be easily read.

One drug pair can lead to different reactions forming multiple
signals. Thus, the link between two drugs depicts the aggregate score
and label status of the associated signals. For the sake of consistency
among the other views, links and nodes that represent interacting
drugs are encoded with an aggregated score as well as a label status.
Both the link width and shape are mapped to the label status to make
them visually differentiable. That is, a thick solid line means an
unknown signal, while a thin dotted line represents a known signal.

We keep the repetition of ADRs for different DDIs for two rea-
sons. One, to avoid clutter and edge crossing [yHBF08]. Two, the
commonality of ADRs across many interactions is not significant in
the analysis, because an ADR unknown of one DDI may be known
for the others. Moreover, to see the common ADRs of all DDIs of a
drug, all similar ADRs within the view are highlighted upon hover.

Design Alternatives: One possible design alternative to display
signals is parallel coordinates plots (PCP). PCPs have been used
in the past to visualize association rules [HC00, Yan05]. A PCP
with three axis could be used to visualize drug interaction signals,
two for the interacting drugs and one for the associated reactions.
However, this design choice has been found to not be appropriate
for two reasons. One, PCPs work well only for a small number of
items along the axis. Two, PCPS are good for global patterns but
local patterns are difficult to see because of high clutter. For signals,
it is difficult to relate each reaction set with its corresponding drug
interaction because of the extensive edge crossings and overlaps.
Hence, PCPs would fail to capture the detailed view of an AIM (R3,
R4, R5), which is indeed a core purpose of this view.

6.4. Reports View: Revealing Reports
As per (R6), analysts need to access the underlying reports as evi-
dence when validating a signal. The analysts also requested to see
the text narratives related to each case, as the narratives have richer
information then the structured meta-data, a patient’s medical his-
tory and the details of the adverse event potentially helpful in the
evaluation of a signal. We thus design the Report View (Fig. 5).
This view provides a line listing of the reports related to a partic-
ular selected drug or drug interaction. The Report View is linked
with all three views namely the Screening view, Triage view, and
the Forensics view, to give the analyst direct access to the relevant
reports supporting a signal. Similarly, selecting a report highlights
the corresponding drugs and ADRs in all views. The narrative sec-
tion provides options to search for keywords in the text. Specific
narratives are not shown in this paper due to data confidentiality as
they contain sensitive information related to patients.

6.5. Visual Interactions on Linked Views
DIVA is designed to provide rapid exploration capabilities, at least
compared to traditional workflows. All views are interlinked with
each other, that is, all views are updated automatically as the se-
lection of a drug is changed in any view. For instance, any drug
can be made a focus by clicking on any node at any point in the
Screening and Triage view. Hovering over any node highlights the
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corresponding drugs in other views and also provides a tooltip with
additional information. Moreover, the drug of focus in Forensics
view is highlighted in the other views for context. Additionally, to
give the analyst control, each view can be updated via the selection
menus (Fig. 1-d). For example, the sorting feature in the Triage view
allows the analysts to sort drugs either alphabetically, by the number
of interactions they have, or the total number of severe reactions
present within the signals. The drugs in the Screening and Triage
view are by default loaded based on the analyst-assigned set of drugs.
However, more drugs can be added through the drug list (Fig. 1-d).
Each view can be maximized and viewed independently.

7. Evaluation
We evaluated the effectiveness and improvement opportunities in
DIVA by conducting in-depth case studies and semi-structured in-
terviews with domain experts who are drug safety analysts at the
FDA. These experts also helped us in the iterative design of DIVA.
After introducing the system to them, we observe them exploring
the data in a think-aloud manner, and noting their feedback. During
the interview, experts used the DIVA system on data from Quarter
4, 2014 (Oct-Dec, 2014) of FAERS. In total, MARAS [QKW∗17]
generated 1115 distinct ranked signals from this data.

7.1. DIVA Evaluation Using Case Studies
Next we describe the case study reflecting the exploration, and
vetting of unknown drug interaction-related adverse reaction signals
conducted by one of the drug safety analysts. The analyst is to
explore the signals related to the drugs assigned to him and analyze
if there is any potential new signal that needs further investigation.

Figure 9: Forensics View for drug Lansoprazole. Interaction with Digoxin
leading to acute kidney injury, a DME, is unknown, and is highly scored by
the rule mining hence worthy of further investigation.

The analyst first selects his set of assigned drugs from the drug
selection menu. He begins exploring with all views updated for his
set of assigned drugs. He first examines the Screening view in the
DIVA system and says “At a glance I can see that I have a few
‘dark red’ unknown signals to investigate today” (R1). He adds these
drugs with higher scores to the Triage view by clicking on them.
Next he determines which drug to start to investigate among his
selected set of drugs.

After looking at the assigned drugs in the Triage view sorted
by the severity of reactions, he chooses “Lansoprazole” (Fig. 9)
to explore first (R2). He explains “First, it seems to have more
DMEs compared to others. Second, it has a highly scored unknown
interaction”. He also mentions ”it might be quicker to start the
analysis with it as there are only three interactions to analyze”. To
view the reactions, he opens the Forensics view (Fig. 9) by clicking
on the node. He then comments “Lansoprozole, a protein pump
inhibitor usually interacts with Digoxin but the resulting ADR acute
kidney injury, which is a DME, is not labeled yet” (R4, R5).

The analyst is now curious to see if this interaction leading to

acute kidney injury indeed is a safety signal. He clicks on the in-
teraction represented by link between Digoxin and Lansoprozole
to view the reports and get the details of the cases that were used
to extract the signal (R6). He starts to explore the relevant reports
(Fig. 5). He then comments “I see almost all of these reports also
have another drug “Furosemide”, which is used to treat kidney disor-
ders”. He further adds “the patients who were taking Lansoprozole
were also taking Furosemide. That means, they might already be
having a kidney disorder and Furosemide was prescribed to them
for treatment. However, because of the DME we should keep an eye
on it”. He pins the drug for further investigation using the pin button
on the Triage view.

Coming back to the Forensics view, he then analyzes the other
interacting drugs, i.e., Simavastatin and Aspirin. He comments, “We
are aware of the interaction with Aspirin but it is not very severe,
and from its light color it seems that it is not ranked high by the
mining process either. Also, interaction with Simvastatin which is
used to treat high cholesterol and triglyceride level leading dizziness
is labeled too. So I will not analyze them further” (R3).

When analyzing this first drug, “Lansoprazole” he does not find
any threatening signals to further evaluate via reading the case
narratives or by examining data from clinical trials. He then moves
on to study his next assigned drug, as his job is to screen through all
signals related to the drugs assigned to him. This time he screens
“Cyclophosphamide” by examining the Triage view. He explains
“though there are not many high scored unknown signals but the
higher count of DMEs cannot be ignored”. He then explores it
further using the Forensics view (Fig. 1-c). “I see all the interactions
have the DME neutropenia listed as an ADR, which is a labeled
ADR for Cyclophosphamide itself. They all have a similar color
(low score)”. He hovers over the edges and explains “The report
count is same for all signals, they must have been extracted from
same set of reports.”

Figure 10: Forensics View for Byetta. Interaction with Victoza and Januvia
is just a co-occurrence and not an interaction as all three of these drugs
belong to same drug class that treats diabetes.

Then the analyst selects his next drug from the Triage View
“Byetta” and explains “I noticed a highly scored unknown interaction
with Victoza” (Fig. 10). He points out “Both of these drugs are
anti-diabetic and are used to control blood sugar level”. He explains
further “this cannot be an interaction but it must be a mere co-
occurrence. The reason can be that the patient might have changed
therapies during treatment and hence these two drugs were reported
together”. The analyst gives similar remarks for the interacting drug
Januvia which is also an anti-diabetic drug from the same class.

To examine next, the analyst selects the “Ondansetron” drug in
the Triage view as it has a high score signal. Upon viewing its
details in the Forensics view (Fig. 11), he observes that the ADR
associated with this signal is “Serotonin Syndrome”, a severe ADR.
He explains, “Ondansetron is used to treat vomiting and nausea
caused by chemotherapy or radiations”. He further comments “FDA
added a warning in Ondansetron’s label based on reports to avoid
concomitant (at the same time) use of Lithium that might develop
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serotonin syndrome”. Pointing to this known interaction, he adds
“the fact that I can find the information about this signal being already
labeled visually is very convenient and saves my time by not having
to search for it in a separate tool” (R3).

7.2. Interviews with Domain Experts
We interviewed multiple target domain experts to assess the effec-
tiveness of DIVA and validate our design choices. Before presenting
the prototype to a larger audience, we first invited two domain ex-
perts for the pilot study. The goal of the pilot study was to identify
potential usability issues and to gather initial feedback on the work-
flow of the system. The two participants explored the system on
their own after we had introduced the visual designs to them. One of
the participants said “The Forensics view is very intuitive and easy
to read, having the focused drug at first. Then we can see how this
drug is interacting with other drugs and then we see the ADRs for
each interaction. Following each path is easier to understand and the
DMEs being highlighted make it very easy to grasp an interesting
signal.” They had a few suggestions too. At first, we had separate
windows for the Forensics view. However, they suggested to keep
everything within one window and instead give the user control to
choose a view to maximize or minimize. We added this capability
to our system (Fig. 1). They also suggested to make the report view
available on demand only, i.e., whenever a user wants to see the
relevant reports. Other minor suggestions included, highlighting the
focus drug, and keeping the report view as simple as possible.

After the pilot study, we interviewed a larger group of 10 drug
safety analysts to gain a more detailed assessment of the individual
components of the system. These analysts were familiar with basic
visualizations such as bar charts and pie charts. Our participants
tried out the system themselves. These semi-structured interviews
were guided by the questions provided in Table 1. We noted their
feedback during the interview. Overall, the feedback was positive.
Limitations in the current system were also collected.

The analysts’ comments are summarized below:
All domain experts agreed that the Triage and Forensics view

were intuitive, easy to read and informative. For the overall system,
they commented “This is a very useful system, the Triage view helps
us to prioritize a drug for review and steps for further investigations
are smooth using the Forensics and Report view”, “It is easy to differ-
entiate DMEs from non-DMEs through the highlights, as compared
to reading the list or trusting one’s memory”, “having the ability to
highlight interesting and highly scored signals is very effective in
narrowing down our investigation”, “the Triage view even helps in
comparing two drugs, by their number of interactions or interesting
interaction or the DMEs present for each drug”, “this can really help
us in screening potential signals faster and then finding similar case
reports, without searching for them manually”, “this has not been
done before, it is very useful and aligns with our workflow”.

Figure 11: Forensics View for Ondansetron. Interaction with lithium lead-
ing to severe and rare adverse reaction (ADR) ‘serotonin syndrome’ has
been labeled by the FDA recently.

Table 1: Questions covered in a two hour interview with a group of drug
safety analysts from the FDA.

# Aim Question

1 Visual Design Is it easy/hard to read the Triage view? Why?
2 Visual Design Is it easy/hard to detect unknown interesting signals? Why?
3 Visual Design Is it easy/hard to read the Forensics view? Why?
4 General Do you think the views are intuitive and align with the

work-flow? How?
5 General Do you think the system is useful in screening and investi-

gation of signals? How?
6 General Which part of the visual interface can be further improved

in your opinion? How?

8. Discussion
The results of these evaluation activities, which include case-studies
and interviews with drug analysts, suggest that DIVA is effective at
aiding analysts in identifying and verifying potential drug interac-
tion signals. Several comments from drug analysts compared DIVA
favorably to their current screening process, which primarily in-
volves manual analysis of individual reports and manual approaches
for retrieving similar reports. The multiple coordinated views in
DIVA appear to align with analysts’ preferred workflow of interac-
tively escalating and investigating signals from a pool of possible
candidates, in this case generated from mining techniques.

More broadly, the scalability of visual analytics workflows was
one challenge encountered in the design and evaluation of DIVA.
DIVA currently works with one year of data consisting of 1178
drugs (nodes) and 2763 candidate signals (edges). However, it is
less straightforward to scale the interplay between the drug analysts
and the underlying data processing algorithms and corresponding
workflow in DIVA. Solutions to overcome the scalability issues in
node-link diagrams such as NodeTrix [HFM07] should be explored
in future. However, these interventions should also be coupled with
evaluations to ensure that the domain analysts can reliably interpret
and act on these hybrid displays. While there are a host of design
models and activities for general visualization design, i.e. Munzner’s
Nested Model [Mun09], exactly how these activities and models
map to visual analytics settings remains unclear, a gap which may
be addressed in future work.

At a more practical level, our interviews with drug analysts re-
vealed a need for the ability to incorporate additional domain knowl-
edge. Information about known signals is available in drug package
inserts (labels) and via online sources. In DIVA, data from one of
these online sources (Drugs.com) is used. This dataset is known
to be incomplete [SHK∗15], and this gap was noticed by analysts
during evaluation. To have a more complete list of known signals,
integration of additional data sources such as DrugBank [Drua]
is needed. More broadly, the dynamic nature of knowledge in the
drug analysis space points to a future need for ways to incorporate
dynamic heterogenous data, rather than static as is current practice.
Dynamic data integration, however, will raise new challenges for
investigative analysis, such as when new information is learned that
may inform prior (i.e. closed) investigations.

Beyond drug analysis, although DIVA is designed for a specific
domain application, some components may be adapted to other
domains that focus on low-level investigative analysis. For instance,
there exist similar reporting systems in other domains, such as
the aviation industry, where the Federal Aviation Administration
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manages Service Difficulty Reporting system [SDR, MR12] that
collects reports about any malfunctions or defects in the planes. The
idea of generating hypotheses about a faulty airplane using machine
learning from a huge set of reports and providing means to explore
and validate these hypotheses with interactive visualizations and
domain expertise can be used in these application areas as well.

9. Conclusion And Future Work
In this paper, we contribute a design study for a visual analytics
tool, DIVA, that supports analysts in discovering novel drug-drug
interaction signals from a pool of hypothesized signals generated by
machine learning techniques. DIVA, designed through interviews
and requirements garnered through collaboration with drug safety
analysts, uses a data abstraction augmented by a set of attributes
and their relationships important for the review process. DIVA then
uses a set of views that provides different perspectives of this ab-
straction to enable analysts to explore and verify the mined signals.
DIVA provides an overview of the drug interaction space, a middle
layer view consisting of small multiples node-link diagrams to show
coarse-level signals, and a detail view to support validation. The
results of our case-studies and interviews with drug safety analysts
illustrate the effectiveness of visual analytics approaches such as
DIVA for supporting Pharmacovigilance workflows.

In the future, we plan to integrate additional knowledge sources
into the mining process to provide more accurate information for the
review process. We also intend to integrate analysts’ feedback and
interaction as annotation of signals in the mining process, so that
signal generation can be improved. More broadly, we plan to explore
visual analytics approaches for drug analysts’ style of investigative
analysis, which relies heavily on evidence collection from raw re-
ports. Finally, to address the fact that drug interactions may impact
sub-populations differently, we will incorporate demographics in
the visual analytics pipeline from signal generation to the visual rep-
resentation. Drug interaction remains a serious public health issue.
However, the use of computation and in particular visual analytics
approaches show promise in improving the analytics that lead to
regulatory action.
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